The course is designed to appeal to scientific and engineering professionals who wish to obtain and or increase knowledge in Artificial Intelligence / Autonomous Systems and Human Autonomy Teaming. Introduction to the main foundational concepts and techniques used in Artificial Intelligence (AI); including decision making, planning, machine learning, and cognition. Includes a range of real-world applications in which AI is currently used in aeronautical and aerospace systems. Presentation of theoretical concepts occurs. Systematic study of methods and research findings in the field of human perception, with an evaluation of theoretical interpretations. Provides a basis for the understanding of these perceptual capabilities as components in Artificial Intelligence in aviation/aerospace systems. The field of human-autonomy teaming (HAT) is fast becoming a significant area of research, especially in aviation. HAT is highly interdisciplinary, bringing together methodologies and techniques from robotics, artificial intelligence, human-computer interaction, cognitive psychology, neuroscience, neuroergonomics, and other fields. The topics covered will include technologies that enable human-machine interactions, the psychology of interaction between people and machines, how to design and conduct HAT studies, and real-world applications such as assistive machines. Covered are the advanced systematic study of methods and research findings in the field of human and computer perception, with an evaluation of theoretical interpretations. Algorithmic foundations of AI / ML. Additionally, introduction to Autonomous Systems will be covered. Surveys the fundamentals of autonomous aircraft system operations, from sensors, controls, and automation to safety procedures, human factors. Presentation of advanced theoretical concepts for artificial intelligence in the areas of knowledge representation and search techniques. The concept of the perceptron and neuron will be covered along with 1st, 2nd, and 3rd generation neural networks. Machine Learning is also covered: hands-on, live and in-action machine learning problems will be solved: utilizing regression analysis, ANNs, RNNs, CNNs (Deep Learning), SNNs, RELs, SVMs, and Bayesian Belief Networks. This course presents the latest major commercial uses of UAS, and manned aircraft that will be going from 2-pilot operations to 1-pilot operations to unmanned operations.
This site is created, maintained, and managed by Conference Catalysts, LLC. Please feel free to contact us for any assistance.